By Topic

Continuous Reverberation Response and Comb Spectra Waveform Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Newhall, B.K. ; Johns Hopkins Univ., Laurel

A model for the matched filter response to continuous reverberation from the transmission of broadband waveforms is developed. The application is for reverberation from a rough interface, based on perturbation theory. The model is developed for both the stationary rough bottom and the moving ocean surface interfaces. The mean reverberation is predicted as a function of the Doppler speed of the matched filter replica. Application is made to the design of waveforms with comb-like spectra. A uniform train of impulses produces a comb spectrum that is shown to significantly reject reverberation for a certain range of Doppler speeds. A similar low-reverberation response is produced from a continuous source emitting a wavetrain composed of adjacent hyperbolic-frequency-modulated (HFM) pulses. A waveform design technique is demonstrated to ensure continuity of the entire HFM wavetrain. Finally, waveforms with geometrically spaced comb spectra are considered. A new geometric comb waveform with constant amplitude is specified. However, this waveform requires a large bandwidth which may be difficult to obtain with practical high-power sources. Hard and soft-clipped versions of the comb spectra waveform are considered which provide useful compromises between the amount of reverberation suppression, the transmitted energy efficiency, and the utilization of available bandwidth.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:32 ,  Issue: 2 )