By Topic

Coherence Multiplexing System Based on Asymmetric Mach–Zehnder Interferometers for Faraday Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zu-Guang Guan ; Zhejiang Univ., Hangzhou ; Sailing He

An optical coherence multiplexing system for Faraday sensors is proposed. With an asymmetric Mach-Zehnder (M-Z) interferometer, the linearly polarized light from a Faraday sensor is decomposed into two orthogonal modes, which are interrogated by a path-scanning Michelson interferometer at different path positions. The variations in the intensities of these two modes are utilized to deduce the rotation of the polarization plane, which is related to the measurand tested by the Faraday sensor. By employing multiple asymmetric M-Z interferometers with arm-lengths carefully controlled, the sensing signals of the multiplexed Faraday sensors are obtained and well separated in one scan of the Michelson interferometer.

Published in:

Photonics Technology Letters, IEEE  (Volume:19 ,  Issue: 23 )