System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Multigigahertz Causal Transmission Line Modeling Methodology Using a 3-D Hemispherical Surface Roughness Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

As computer clock speeds continue to increase at a rate dictated by Moore's Law, the system buses must also scale in proportion to the processor speed. As data rates increase beyond ~5 Gb/s, the historical methods used to model transmission lines start to break down and become inadequate for the proper prediction of signal integrity. Specifically, the traditional approximations made in transmission line models, while perfectly adequate for slower speeds, do not properly account for the extra losses caused by surface roughness and do not model the frequency dependence of the complex dielectric constant, producing incorrect loss and phase-delay responses, as well as noncausal waveforms in the time domain. This paper will discuss the problems associated with modeling transmission lines at high frequencies, and will provide a practical modeling methodology that accurately predicts responses for very high data rates.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 12 )