By Topic

Applications of Nanophotonics to Classical and Quantum Information Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Beausoleil, R.G. ; HP Lab., Palo Alto

Moore's Law has set great expectations that the performance/price ratio of commercially available semiconductor devices will continue to improve exponentially at least until the end of the next decade. Although the physics of nanoscale silicon transistors alone would allow these expectations to be met, the physics of the metal wires that connect these transistors will soon place stringent limits on the performance of integrated circuits. We will describe a Si-compatible global interconnect architecture - based on chip-scale optical wavelength division multiplexing - that could precipitate an "optical Moore's Law" and allow exponential performance gains until the transistors themselves become the bottleneck. Based on similar fabrication techniques and technologies, we will also present an approach to an optically-coupled quantum information processor for computation beyond Moore's Law, encouraging the development of practical applications of quantum information technology for commercial utilization.

Published in:

Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE

Date of Conference:

21-25 Oct. 2007