By Topic

A Single-Chip Dual-Band CDMA2000 Transceiver in 0.13 μm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Zipper, J. ; Danube Integrated Circuit Eng., Linz ; Stoger, C. ; Hueber, G. ; Vazny, R.
more authors

A single-chip, dual-band transceiver for CDMA2000 is presented. The design supporting the North American cellular and PCS bands features a complete zero-IF receiver, a direct-conversion transmitter and two fully integrated synthesizers with VCOs. The analog receiver front-end comprises two self-matched wideband LNAs, a highly linear demodulator and a third-order baseband filter. In a test version I/Q ADCs and a digital front-end (DFE) to provide channel and matched filtering are included to demonstrate the performance of a fully integrated analog/digital line-up. Measured maximum SNR values of 23 dB and 25 dB for PCS and Cell bands, respectively, are achieved. The transmitter comprises baseband buffers and filters, an I/Q-modulator and separate output drivers for each band. An analog gain control (AGC) for realization of a dynamic range is implemented and a maximum output power of at a total CDG4 urban current of 34 mA is achieved for the PCS band. Measured ACPR1 and values are and 0.998 for the Cell band and and 0.995 for the PCS band, respectively. The chip is fabricated in a 0.13 RF-CMOS process, occupies a die size of 8.4 and operates with a 2.5 V supply.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:42 ,  Issue: 12 )