By Topic

A 2.5 nJ/bit 0.65 V Pulsed UWB Receiver in 90 nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fred S. Lee ; Rambus, Inc., Los Altos ; Anantha P. Chandrakasan

A noncoherent 0-16.7 Mb/s ultra-wideband (UWB) receiver using 3-5 GHz subbanded pulse-position modulation (PPM) signaling is implemented in a 90 nm CMOS process. The RF and mixed-signal baseband circuits operate at 0.65 V and 0.5 V, respectively. Using duty-cycling, adjustable bandpass filters, and a relative-compare baseband, the receiver achieves 2.5 nJ/bit at 10-3 BER with -99 dBm best case sensitivity at 100 kb/s. The energy efficiency is maintained across three orders of magnitude in data rate. For data rates less than 10 kb/s, leakage power dominates energy/bit.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:42 ,  Issue: 12 )