By Topic

On the Linear Behaviour of the Throughput of IEEE 802.11 DCF in Non-Saturated Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We propose a linear model of the throughput of the IEEE 802.11 distributed coordination function (DCF) protocol at the data link layer in non-saturated traffic conditions. We show that the throughput is a linear function of the packet arrival rate (PAR) lambda with a slope depending on both the number of contending stations and the average payload length. We also derive the interval of validity of the proposed model by showing the presence of a critical lambda, above which the station begins operating in saturated traffic conditions. The analysis is based on the multi-dimensional Markovian state transition model proposed by Liaw et al. with the aim of describing the behaviour of the MAC layer in unsaturated traffic conditions. Simulation results closely match the theoretical derivations, confirming the effectiveness of the proposed linear model.

Published in:

Communications Letters, IEEE  (Volume:11 ,  Issue: 11 )