By Topic

Scalable Sequential Equivalence Checking across Arbitrary Design Transformations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Baumgartner, J. ; IBM Systems & Technology Group ; Mony, H. ; Paruthi, V. ; Kanzelman, R.
more authors

High-end hardware design flows mandate a variety of sequential transformations to address needs such as performance, power, post-silicon debug and test. Industrial demand for robust sequential equivalence checking (SEC) solutions is thus becoming increasingly prevalent. In this paper, we discuss the role of SEC within IBM. We motivate the need for a highly-automated scalable solution, which is robust against a variety of design transformations - including those that alter initialization sequences. This motivation has caused us to embrace the paradigm of SEC with respect to designated initial states. We furthermore describe the diverse set of algorithms comprised within our SEC framework, which we have found necessary for the automated solution of the most complex SEC problems. Finally, we provide several experiments illustrating the necessity of our diverse algorithm flow to efficiently solve difficult SEC problems involving a variety of design transformations.

Published in:

Computer Design, 2006. ICCD 2006. International Conference on

Date of Conference:

1-4 Oct. 2007