By Topic

Statistical Analysis of Power Grid Networks Considering Lognormal Leakage Current Variations with Spatial Correlation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ning Mi ; Univ. of California, Riverside ; Fan, J. ; Tan, S.X.

As the technology scales into 90 nm and below, process-induced variations become more pronounced. In this paper, we propose an efficient stochastic method for analyzing the voltage drop variations of on-chip power grid networks, considering log-normal leakage current variations with spatial correlation. The new analysis is based on the Hermite polynomial chaos (PC) representation of random processes. Different from the existing Hermite PC based method for power grid analysis, which models all the random variations as Gaussian processes without considering spatial correlation. The new method focuses on the impacts of stochastic sub-threshold leakage currents, which are modeled as log-normal distribution random variables, on the power grid voltage variations. To consider the spatial correlation, we apply orthogonal decomposition to map the correlated random variables into independent variables. Our experiment results show that the new method is more accurate than the Gaussian-only Hermite PC method using the Taylor expansion method for analyzing leakage current variations, and two orders of magnitude faster than the Monte Carlo method with small variance errors. We also show that the spatial correlation may lead to large errors if not being considered in the statistical analysis.

Published in:

Computer Design, 2006. ICCD 2006. International Conference on

Date of Conference:

1-4 Oct. 2007