By Topic

An Effective Automatic Memory Allocation Algorithm Based on Schedule Length in a Novel C to FPGA Compiler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kristopher D. Peterson ; Imperial College of London, London, UK. email: k.peterson06@imperial.ac.uk ; Justin L. Tripp

A significant challenge in designing algorithms for FPGA-based reconfigurable computers is the exposed, non-cached memory subsystem. In the absence of dedicated hardware to manage a cached memory hierarchy, the algorithm designer must explicitly allocate data within a collection of memory banks, and schedule access to the memories in the algorithm's datapaths. The physical location in memory affects the datapath schedule, yet data dependencies in the algorithm can suggest allocation strategies to increase instruction level parallelism. In this work, we present three algorithms that automatically allocate arrays to memory banks and schedule datapaths that use those memories. Our algorithm allows the user to trade-off optimal results versus longer iterative analysis.

Published in:

2007 International Conference on Field Programmable Logic and Applications

Date of Conference:

27-29 Aug. 2007