By Topic

A Conducting Cylinder for Modeling Human Body Presence in Indoor Propagation Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ghaddar, M. ; Univ. of Quebec, Montreal ; Talbi, L. ; Denidni, T.A. ; Sebak, A.

We demonstrate that in indoor radio propagation modeling, the presence of the human body may be approximated by a conducting circular cylinder at microwave frequencies. Therefore, a perfect tool such as the uniform theory of diffraction may be used to predict the diffracted field over a smooth circular surface. To validate the model, vertically and horizontally polarized continuous wave (CW) measurements were performed at 10.5 GHz between two fixed terminals inside a room along with the presence of an obstacle (person or metallic cylinder) moving along predetermined parallel and perpendicularly crossing paths with respect to the line-of-sight direction. Results indicate that there is a strong correlation between the effects of the human body and those of a conducting circular cylinder. The simulation results successfully agree with the CW experimental measurements.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:55 ,  Issue: 11 )