By Topic

Development and Analysis of a Neural Dynamical Approach to Nonlinear Programming Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Youshen Xia ; Fuzhou Univ., Fuzhou ; Gang Feng ; Kamel, M.

This technical note develops a neural dynamical approach to nonlinear programming (NP) problems, whose equilibrium points coincide with Karush-Kuhn-Tucker points of the NP problem. A rigorous analysis on the global convergence and the convergence rate of the proposed neural dynamical approach is carried out under the condition that the associated Lagrangian function is convex. Analysis results show that the proposed neural dynamical approach can solve general convex programming problems and a class of nonconvex programming problems. Two nonconvex programming examples are provided to demonstrate the performance of the developed neural dynamical approach.

Published in:

Automatic Control, IEEE Transactions on  (Volume:52 ,  Issue: 11 )