By Topic

A Real-Time Framework for Model-Predictive Control of Continuous-Time Nonlinear Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Darryl DeHaan ; Praxair Inc., Buffalo ; Martin Guay

A new formulation of model-predictive control (MPC) for continuous-time nonlinear systems is developed, which allows for the use of ldquoreal-timerdquo (RT) optimization techniques in which the solution to the finite-horizon optimal control problem (OPC) evolves within the same timescale as the process dynamics. The computational savings of the RT solver are enhanced by the unique framework within which the OPC is posed, enabling significant reduction in the dimensionality of the search for situations where computational speed takes priority over optimality of the solutions. This framework, and its associated proof of stability, encompasses results on sampled-data (SD) nonlinear model-predictive control (NMPC) implementation as a special case.

Published in:

IEEE Transactions on Automatic Control  (Volume:52 ,  Issue: 11 )