By Topic

Reduced-Rank Adaptive Filtering Based on Joint Iterative Optimization of Adaptive Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

This letter proposes a novel adaptive reduced-rank filtering scheme based on joint iterative optimization of adaptive filters. The novel scheme consists of a joint iterative optimization of a bank of full-rank adaptive filters that forms the projection matrix and an adaptive reduced-rank filter that operates at the output of the bank of filters. We describe minimum mean-squared error (MMSE) expressions for the design of the projection matrix and the reduced-rank filter and low-complexity normalized least-mean squares (NLMS) adaptive algorithms for its efficient implementation. Simulations for an interference suppression application show that the proposed scheme outperforms in convergence and tracking the state-of-the-art reduced-rank schemes at significantly lower complexity.

Published in:

IEEE Signal Processing Letters  (Volume:14 ,  Issue: 12 )