Cart (Loading....) | Create Account
Close category search window

An Evolutionary Algorithm Approach to Optimal Ensemble Classifiers for DNA Microarray Data Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kim, K.-J. ; Dept. of Comput. Sci., Yonsei Univ., Seoul ; Sung-Bae Cho

In general, the analysis of microarray data requires two steps: feature selection and classification. From a variety of feature selection methods and classifiers, it is difficult to find optimal ensembles composed of any feature-classifier pairs. This paper proposes a novel method based on the evolutionary algorithm (EA) to form sophisticated ensembles of features and classifiers that can be used to obtain high classification performance. In spite of the exponential number of possible ensembles of individual feature-classifier pairs, an EA can produce the best ensemble in a reasonable amount of time. The chromosome is encoded with real values to decide the weight for each feature-classifier pair in an ensemble. Experimental results with two well-known microarray datasets in terms of time and classification rate indicate that the proposed method produces ensembles that are superior to individual classifiers, as well as other ensembles optimized by random and greedy strategies.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:12 ,  Issue: 3 )

Date of Publication:

June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.