Cart (Loading....) | Create Account
Close category search window

A Novel Technique to Model the Variation of the Intrinsic Parameters of an Automatic Zoom Camera using Adaptive Delaunay Meshes Over Moving Least-Squares Surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sarkis, M. ; Tech. Univ. Munchen, Munich ; Senft, C.T. ; Diepold, K.

The accuracy of computer vision systems is highly dependent on the correct estimates of the camera intrinsic parameters. This accuracy is important in numerous applications like telepresence and robot navigation. In this work, a novel technique is proposed to model the variation of the camera's intrinsic parameters as a function of the focus and the zoom. The proposed method computes the complete surfaces of the intrinsic parameters from a predefined number of focus/zoom measurements using a moving least-squares (MLS) regression technique. Then, it approximates the generated MLS surfaces by employing adaptive Delaunay meshes. Compared to a previous technique using bivariate polynomial functions, the new method results in a 94% enhancement of the mean estimation error. In addition, the new method leads to the same accuracy of the results as compared to a previous version of the MLS technique while requiring a less amount of computations.

Published in:

Image Processing, 2007. ICIP 2007. IEEE International Conference on  (Volume:5 )

Date of Conference:

Sept. 16 2007-Oct. 19 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.