By Topic

Image Resolution Enhancement using Wavelet Domain Hidden Markov Tree and Coefficient Sign Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Temizel, A. ; METU, Ankara

Image resolution enhancement using wavelets is a relatively new subject and many new algorithms have been proposed recently. These algorithms assume that the low resolution image is the approximation subband of a higher resolution image and attempts to estimate the unknown detail coefficients to reconstruct a high resolution image. A subset of these recent approaches utilized probabilistic models to estimate these unknown coefficients. Particularly, hidden Markov tree (HMT) based methods using Gaussian mixture models have been shown to produce promising results. However, one drawback of these methods is that, as the Gaussian is symmetrical around zero, signs of the coefficients generated using this distribution function are inherently random, adversely affecting the resulting image quality. In this paper, we demonstrate that, sign information is an important element affecting the results and propose a method to estimate signs of these coefficients more accurately.

Published in:

Image Processing, 2007. ICIP 2007. IEEE International Conference on  (Volume:5 )

Date of Conference:

Sept. 16 2007-Oct. 19 2007