By Topic

Communicating via Fireflies: Geographic Routing on Duty-Cycled Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nath, S. ; Microsoft Res., Redmond ; Gibbons, P.B.

Geographic routing is a useful and scalable point-to-point communication primitive for wireless sensor networks. However, previous work on geographic routing makes the unrealistic assumption that all the nodes in the network are awake during routing. This overlooks the common deployment scenario where sensor nodes are duty-cycled to save energy. In this paper we investigate several important aspects of geographic routing over duty-cycled nodes. First, we extend existing geographic routing algorithms to handle the highly dynamic networks resulting from duty-cycling. Second, we provide the first formal analysis of the performance of geographic routing on duty-cycled nodes. Third, we use this analysis to develop an efficient decentralized sleep scheduling algorithm for reducing the number of awake nodes while maintaining both network coverage and a (tunable) target routing latency. Finally, we evaluate via simulation the performance of our approach versus running existing geographic routing algorithms on sensors duty-cycled according to previous sleep scheduling algorithms. Our results show, perhaps surprisingly, that a network of duty-cycled nodes can have slightly better routing performance than a static network that uses comparable energy. Our results further show that, compared to previous algorithms, our sleep scheduling algorithm significantly improves routing latency and network lifetime.

Published in:

Information Processing in Sensor Networks, 2007. IPSN 2007. 6th International Symposium on

Date of Conference:

25-27 April 2007