By Topic

Robust System Multiangulation Using Subspace Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ash, J.N. ; Ohio State Univ. Columbus, Columbus ; Potter, L.C.

Sensor location information is a prerequisite to the utility of most sensor networks. In this paper we present a robust and low-complexity algorithm to self-localize and orient sensors in a network based on angle-of-arrival (AOA) information. The proposed non-iterative subspace-based method is robust to missing and noisy measurements and works for cases when sensor orientations are either known or unknown. We show that the computational complexity of the algorithm is O(mn2), where m is the number of measurements and n is the total number of sensors. Simulation results demonstrate that the error of the proposed subspace algorithm is only marginally greater than an iterative maximum-likelihood estimator (MLE), while the computational complexity is two orders of magnitude less. Additionally, the iterative MLE is prone to converge to local maxima in the likelihood function without accurate initialization. We illustrate that the proposed subspace method can be used to initialize the MLE and obtain near-Cramer-Rao performance for sensor localization. Finally, the scalability of the subspace algorithm is illustrated by demonstrating how clusters within a large network may be individually localized and then merged.

Published in:

Information Processing in Sensor Networks, 2007. IPSN 2007. 6th International Symposium on

Date of Conference:

25-27 April 2007