By Topic

Accurate Dynamic Scene Model for Moving Object Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hong Yang ; Huazhong Univ. of Sci. & Technol., Wuhan ; Tan, Yihua ; Jinwen Tian ; Liu, Jian

Adaptive pixel-wise Gaussian mixture model (GMM) is a popular method to model dynamic scenes viewed by a fixed camera. However, it is not a trivial problem for GMM to capture the accurate mean and variance of a complex pixel. This paper presents a two-layer Gaussian mixture model (TLGMM) of dynamic scenes for moving object detection. The first layer, namely real model, deals with gradually changing pixels specially; the second layer, called on-ready model, focuses on those pixels changing significantly and irregularly. TLGMM can represent dynamic scenes more accurately and effectively. Additionally, a long term and a short term variance are taken into account to alleviate the transparent problems faced by pixel-based methods.

Published in:

Image Processing, 2007. ICIP 2007. IEEE International Conference on  (Volume:6 )

Date of Conference:

Sept. 16 2007-Oct. 19 2007