Cart (Loading....) | Create Account
Close category search window
 

Dominant Sets-Based Action Recognition using Image Sequence Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Action recognition is one of the most active research fields in computer vision. In this paper, we propose a novel method for classifying human actions in a series of image sequences containing certain actions. Human action in image sequences can be recognized by a time-varying contour of human body. We first extract shape context of each contour to form the feature space. Then the dominant sets approach is used for feature clustering and classification to obtain the labeled sequences. Finally, we use a smoothing algorithm upon the labeled sequences to recognize human actions. The proposed dominant sets-based approach has been tested in comparison to three classical methods: K-means, mean shift, and fuzzy-C-mean. Experimental results demonstrate that the dominant sets-based approach achieves the best recognition performance. Moreover, our method is robust to non-rigid deformations, significant scale changes, high action irregularities, and low quality video.

Published in:

Image Processing, 2007. ICIP 2007. IEEE International Conference on  (Volume:6 )

Date of Conference:

Sept. 16 2007-Oct. 19 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.