By Topic

Locally Adaptive Wavelet-Based Image Denoising using the Gram-Charlier Prior Function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. M. Mahbubur Rahman ; Department of Electrical and Computer Engineering, Concordia University, 1455 De Maisonneuve Blvd. West Montreal, Quebec, Canada, H3G 1M8. e-mail: mahb ; M. Omair Ahmad ; M. N. S. Swamy

Statistical estimation techniques for the wavelet-based image denoising use suitable probability density functions (PDFs) as prior functions for the image coefficients. Due to the intrascale dependency of the local neighboring image wavelet coefficients, the prior functions are assumed to be stationary. In this paper, it is shown that the stationary Gram-Charlier (GC) PDF models the image coefficients better than the traditional ones, such as the stationary Gaussian and stationary generalized Gaussian PDFs. A Bayesian wavelet-based maximum a posteriori estimator is then developed by using the proposed GC prior function. Experimental results on standard images show that the proposed estimator provides a denoising performance, which is better than that of several existing denoising methods in terms of signal-to-noise ratio and visual quality.

Published in:

2007 IEEE International Conference on Image Processing  (Volume:3 )

Date of Conference:

Sept. 16 2007-Oct. 19 2007