By Topic

A Novel Video Object Tracking Approach Based on Kernel Density Estimation and Markov Random Field

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhi Liu ; Shanghai Univ., Shanghai ; Liquan Shen ; Zhongmin Han ; Zhaoyang Zhang

In this paper, we propose a novel video object tracking approach based on kernel density estimation and Markov random field (MRF). The interested video objects are first segmented by the user, and a nonparametric model based on kernel density estimation is initialized for each video object and the remaining background, respectively. A temporal saliency map is also initialized for each object to memorize the temporal trajectory. Based on the probabilities evaluated on the non-parametric models, each pixel in the current frame is first classified into the corresponding video object or background using the maximum likelihood criterion. Starting from the initial classification result, a MRF model that combines spatial smoothness and temporal coherency is selectively exploited to generate more reliable video objects. The nonparametric model and the temporal saliency map for each video object are updated and propagated for the future tracking. Experimental results on several MPEG-4 test sequences demonstrate the good segmentation performance of our approach.

Published in:

Image Processing, 2007. ICIP 2007. IEEE International Conference on  (Volume:3 )

Date of Conference:

Sept. 16 2007-Oct. 19 2007