By Topic

A Probabilistic Framework for Geometry Reconstruction using Prior Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wende Zhang ; Carnegie Mellon Univ., Pittsburgh ; Tsuhan Chen

In this paper, we propose a probabilistic framework for reconstructing scene geometry utilizing prior knowledge of a class of scenes, for example, scenes captured by a camera mounted on a vehicle driving through city streets. In this framework, we assume the video camera is calibrated, i.e., the intrinsic and extrinsic parameters are known all the time. While we assume a single camera moving during capturing, the framework can be generalized to multiple cameras as well. Traditional approaches try to match the points, lines or patches in multiple images to reconstruct scene geometry. The proposed framework also takes advantage of each patch's appearance and location to infer its orientation using prior information based on statistical learning from training data. The prior hence enhances the geometry reconstruction performance. We show that prior-based 3D reconstruction outperforms traditional 3D reconstruction with both synthetic data and real data, especially in the textureless areas.

Published in:

Image Processing, 2007. ICIP 2007. IEEE International Conference on  (Volume:2 )

Date of Conference:

Sept. 16 2007-Oct. 19 2007