By Topic

Robust Multi-Modal Group Action Recognition in Meetings from Disturbed Videos with the Asynchronous Hidden Markov Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Al-Hames, M. ; Tech. Univ. Munchen, Munchen ; Lenz, C. ; Reiter, S. ; Schenk, J.
more authors

The asynchronous hidden Markov model (AHMM) models the joint likelihood of two observation sequences, even if the streams are not synchronised. We explain this concept and how the model is trained by the EM algorithm. We then show how the AHMM can be applied to the analysis of group action events in meetings from both clear and disturbed data. The AHMM outperforms an early fusion HMM by 5.7% recognition rate (a rel. error reduction of 38.5%) for clear data. For occluded data, the improvement is in average 6.5% recognition rate (rel. error red. 40%). Thus asynchronity is a dominant factor in meeting analysis, even if the data is disturbed. The AHMM exploits this and is therefore much more robust against disturbances.

Published in:

Image Processing, 2007. ICIP 2007. IEEE International Conference on  (Volume:2 )

Date of Conference:

Sept. 16 2007-Oct. 19 2007