By Topic

Markov Random Field Model-Based Edge-Directed Image Interpolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Min Li ; California Univ., San Diego ; Truong Nguyen

This paper presents an edge-directed image interpolation algorithm. In the proposed algorithm, the edge directions are implicitly estimated with a statistical-based approach. Consequently, the local edge directions are represented by length-16 vectors, which are denoted as weight vectors. The weight vectors are used to formulate geometric regularity constraint, which is imposed on the interpolated image through the Markov Random Field (MRF) model. Furthermore, the interpolation problem is formulated as a Maximum A Posterior (MAP)-MRF problem and, under the MAP-MRF framework, the desired interpolated image corresponds to the minimal energy state of a two-dimensional random held. Simulated Annealing method is used to search for the minimal energy state from a reasonable large state space. Simulation and comparison results show that the proposed MRF model-based edge-directed interpolation method produces edges with strong geometric regularity.

Published in:

Image Processing, 2007. ICIP 2007. IEEE International Conference on  (Volume:2 )

Date of Conference:

Sept. 16 2007-Oct. 19 2007