Cart (Loading....) | Create Account
Close category search window
 

Sparse Gradient Image Reconstruction Done Faster

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Maleh, R. ; Michigan Univ., Ann Arbor ; Gilbert, A.C. ; Strauss, M.J.

In a wide variety of imaging applications (especially medical imaging), we obtain a partial set or subset of the Fourier transform of an image. From these Fourier measurements, we want to reconstruct the entire original image. Convex optimization is a powerful, recent solution to this problem. Unfortunately, convex optimization in its myriad of implementations is computationally expensive and may be impractical for large images or for multiple images. Furthermore, some of these techniques assume that the image has a sparse gradient (i.e., that the gradient of the image consists of a few nonzero pixel values) or that the gradient is highly compressible. In this paper, we demonstrate that we can recover such images with GradientOMP, an efficient algorithm based upon Orthogonal Matching Pursuit (OMP), more effectively than with convex optimization. We compare both the qualitative and quantitative performance of this algorithm to the optimization techniques.

Published in:

Image Processing, 2007. ICIP 2007. IEEE International Conference on  (Volume:2 )

Date of Conference:

Sept. 16 2007-Oct. 19 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.