By Topic

Compressed Sensing Image Reconstruction Via Recursive Spatially Adaptive Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Egiazarian, K. ; Tampere Univ. of Technol., Tampere ; Foi, A. ; Katkovnik, V.

We introduce a new approach to image reconstruction from highly incomplete data. The available data are assumed to be a small collection of spectral coefficients of an arbitrary linear transform. This reconstruction problem is the subject of intensive study in the recent field of "compressed sensing" (also known as "compressive sampling"). Our approach is based on a quite specific recursive filtering procedure. At every iteration the algorithm is excited by injection of random noise in the unobserved portion of the spectrum and a spatially adaptive image denoising filter, working in the image domain, is exploited to attenuate the noise and reveal new features and details out of the incomplete and degraded observations. This recursive algorithm can be interpreted as a special type of the Robbins-Monro stochastic approximation procedure with regularization enabled by a spatially adaptive filter. Overall, we replace the conventional parametric modeling used in CS by a nonparametric one. We illustrate the effectiveness of the proposed approach for two important inverse problems from computerized tomography: Radon inversion from sparse projections and limited-angle tomography. In particular we show that the algorithm allows to achieve exact reconstruction of synthetic phantom data even from a very small number projections. The accuracy of our reconstruction is in line with the best results in the compressed sensing field.

Published in:

Image Processing, 2007. ICIP 2007. IEEE International Conference on  (Volume:1 )

Date of Conference:

Sept. 16 2007-Oct. 19 2007