Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Learning to Group Text Lines and Regions in Freeform Handwritten Notes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper proposes a machine learning approach to grouping problems in ink parsing. Starting from an initial segmentation, hypotheses are generated by perturbing local configurations and processed in a high-confidence-first fashion, where the confidence of each hypothesis is produced by a data-driven AdaBoost decision-tree classifier with a set of intuitive features. This framework has successfully applied to grouping text lines and regions in complex freeform digital ink notes from real TabletPC users. It holds great potential in solving many other grouping problems in the ink parsing and document image analysis domains.

Published in:

Document Analysis and Recognition, 2007. ICDAR 2007. Ninth International Conference on  (Volume:1 )

Date of Conference:

23-26 Sept. 2007