Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Road Network Extraction and Intersection Detection From Aerial Images by Tracking Road Footprints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jiuxiang Hu ; Arizona State Univ. Polytech. Campus, Mesa ; Razdan, A. ; Femiani, J.C. ; Ming Cui
more authors

In this paper, a new two-step approach (detecting and pruning) for automatic extraction of road networks from aerial images is presented. The road detection step is based on shape classification of a local homogeneous region around a pixel. The local homogeneous region is enclosed by a polygon, called the footprint of the pixel. This step involves detecting road footprints, tracking roads, and growing a road tree. We use a spoke wheel operator to obtain the road footprint. We propose an automatic road seeding method based on rectangular approximations to road footprints and a toe-finding algorithm to classify footprints for growing a road tree. The road tree pruning step makes use of a Bayes decision model based on the area-to-perimeter ratio (the A/P ratio) of the footprint to prune the paths that leak into the surroundings. We introduce a lognormal distribution to characterize the conditional probability of A/P ratios of the footprints in the road tree and present an automatic method to estimate the parameters that are related to the Bayes decision model. Results are presented for various aerial images. Evaluation of the extracted road networks using representative aerial images shows that the completeness of our road tracker ranges from 84% to 94%, correctness is above 81%, and quality is from 82% to 92%.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 12 )