By Topic

The Application of Photoacoustic Absorption Spectral Data to the Modeling of Leaf Optical Properties in the Visible Range

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Denise Eng ; Waterloo Univ., Waterloo ; Gladimir V. G. Baranoski

Due to the importance of plants in the Earth's ecosystem, their photobiological responses have become the subject of extensive research in life sciences. Leaf optical models have been developed to assist in the analysis of remotely sensed data to derive information on leaf biochemistry and anatomy from foliar spectral curves (transmittance and reflectance). In this paper, we investigate the implications of using in vitro pigment absorption spectra to model foliar optical properties in the visible domain. Typically, pigment absorption spectra have been determined using light absorption spectroscopy (AS) or by applying a data fitting approach. Alternatively, we propose the use of photoacoustic pigment AS, which, despite being available in the literature, has not been used in the modeling of foliar optical properties before. We also perform computational experiments in which foliar modeled spectral curves generated using these different absorption data sets are compared with actual measured data. Our findings indicate that the proposed alternative not only allows key pigments to be individually incorporated into the models, which, in turn, increases the predictability of the simulations, but also enables the generation of modeled foliar spectral curves that are more accurate than those obtained using absorption data derived from standard AS procedures.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:45 ,  Issue: 12 )