Cart (Loading....) | Create Account
Close category search window
 

Border Vector Detection and Adaptation for Classification of Multispectral and Hyperspectral Remote Sensing Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kasapoglu, N.G. ; Istanbul Tech. Univ., Istanbul ; Ersoy, O.K.

Effective partitioning of the feature space for high classification accuracy with due attention to rare class members is often a difficult task. In this paper, the border vector detection and adaptation (BVDA) algorithm is proposed for this purpose. The BVDA consists of two parts. In the first part of the algorithm, some specially selected training samples are assigned as initial reference vectors called border vectors. In the second part of the algorithm, the border vectors are adapted by moving them toward the decision boundaries. At the end of the adaptation process, the border vectors are finalized. The method next uses the minimum distance to border vector rule for classification. In supervised learning, the training process should be unbiased to reach more accurate results in testing. In the BVDA, decision region borders are related to the initialization of the border vectors and the input ordering of the training samples. Consensus strategy can be applied with cross validation to reduce these dependencies. The performance of the BVDA and consensual BVDA were studied in comparison to other classification algorithms including neural network with backpropagation learning, support vector machines, and some statistical classification techniques.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 12 )

Date of Publication:

Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.