By Topic

Effective Schottky Barrier Height Reduction Using Sulfur or Selenium at the NiSi/n-Si (100) Interface for Low Resistance Contacts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hoong-Shing Wong ; Silicon Nano Device Lab., Singapore ; Lap Chan ; Ganesh Samudra ; Yee-Chia Yeo

We explore a novel integration approach that introduces valence-mending adsorbates such as sulfur (S) or selenium (Se) by ion implantation and prior to nickel silicidation for the effective reduction of contact resistance and Schottky barrier (SB) height at the NiSi/n-Si interface. While a low SB height of ~0.12 eV can be obtained for NiSi formed on S-implanted n-Si, the insertion of a 1000degC anneal prior to silicidation leads to S out-diffusion and loss of SB modulation effects. We demonstrate that Se-implanted Si does not suffer from Se outdiffusion even after a 1000degC anneal, and subsequent Ni silicidation formed an excellent ohmic contact with a low SB height of 0.13 eV. Se segregation at the NiSi/n-Si (100) interface occurred. Implantation of Se and its segregation at the NiSi/n-Si interface is a simple and promising approach for achieving reduced SB height and contact resistance in future high-performance n-channel field-effect transistors.

Published in:

IEEE Electron Device Letters  (Volume:28 ,  Issue: 12 )