By Topic

Giant Random Telegraph Signals in Nanoscale Floating-Gate Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Fantini, P. ; Adv. Res. & Dev. - Flash Memory Group, Agrate Brianza ; Ghetti, A. ; Marinoni, A. ; Ghidini, G.
more authors

The magnitude of a random telegraph signal (RTS) in nanoscale floating-gate devices has been experimentally investigated as a function of carrier concentration. Discrete current switching, which is caused by a single trap, has been found to be almost one order of magnitude higher with respect to what was predicted by the classical theory of carrier number and correlated mobility fluctuations. Nevertheless, the trap signature well fits the typical SiO2 trap spectroscopy. In addition, the rigid shift between the transfer curves related to filled- and empty-trap state, together with the normalized current fluctuation dependence on the channel carrier density, suggests that a pure number fluctuation is the correct theoretical interpretative framework. Thus, we propose a possible physical explanation for such a giant RTS on the basis of a quasi-1-D current filamentation.

Published in:

Electron Device Letters, IEEE  (Volume:28 ,  Issue: 12 )