By Topic

Computational Algorithms for Wavelet Identification of Nonlinearities in Hammerstein Systems With Random Inputs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sliwinski, P. ; Wroclaw Univ. of Technol., Warsaw ; Hasiewicz, Z.

Simple and efficient computational algorithms for nonparametric wavelet-based identification of nonlinearities in Hammerstein systems driven by random signals are proposed. They exploit binary grid interpolations of compactly supported wavelet functions. The main contribution consists in showing how to use the wavelet values from the binary grid together with the fast wavelet algorithms to obtain the practical counterparts of the wavelet-based estimates for irregularly and randomly spaced data, without any loss of the asymptotic accuracy. The convergence and the rates of convergence are examined for the new algorithms and, in particular, conditions for the optimal convergence speed are presented. Efficiency of the algorithms for a finite number of data is also illustrated by means of the computer simulations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 2 )