Cart (Loading....) | Create Account
Close category search window

Semisupervised Clustering with Metric Learning using Relative Comparisons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kumar, N. ; Gridstone Res., Mumbai ; Kummamuru, K.

Semisupervised clustering algorithms partition a given data set using limited supervision from the user. The success of these algorithms depends on the type of supervision and also on the kind of dissimilarity measure used while creating partitions of the space. This paper proposes a clustering algorithm that uses supervision in terms of relative comparisons, viz., x is closer to y than to z. The proposed clustering algorithm simultaneously learns the underlying dissimilarity measure while finding compact clusters in the given data set using relative comparisons. Through our experimental studies on high-dimensional textual data sets, we demonstrate that the proposed algorithm achieves higher accuracy and is more robust than similar algorithms using pairwise constraints for supervision.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 4 )

Date of Publication:

April 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.