By Topic

Out-of-Sample Extrapolation of Learned Manifolds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tat-Jun Chin ; Inst. for Infocomm Res., Singapore ; David Suter

We investigate the problem of extrapolating the embedding of a manifold learned from finite samples to novel out-of-sample data. We concentrate on the manifold learning method called Maximum Variance Unfolding (MVU) for which the extrapolation problem is still largely unsolved. Taking the perspective of MVU learning being equivalent to Kernel PCA, our problem reduces to extending a kernel matrix generated from an unknown kernel function to novel points. Leveraging on previous developments, we propose a novel solution which involves approximating the kernel eigenfunction using Gaussian basis functions. We also show how the width of the Gaussian can be tuned to achieve extrapolation. Experimental results which demonstrate the effectiveness of the proposed approach are also included.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:30 ,  Issue: 9 )