By Topic

Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Erno Makinen ; Univ. of Tampere, Tampere ; Roope Raisamo

We present a systematic study on gender classification with automatically detected and aligned faces. We experimented with 120 combinations of automatic face detection, face alignment, and gender classification. One of the findings was that the automatic face alignment methods did not increase the gender classification rates. However, manual alignment increased classification rates a little, which suggests that automatic alignment would be useful when the alignment methods are further improved. We also found that the gender classification methods performed almost equally well with different input image sizes. In any case, the best classification rate was achieved with a support vector machine. A neural network and Adaboost achieved almost as good classification rates as the support vector machine and could be used in applications where classification speed is considered more important than the maximum classification accuracy.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:30 ,  Issue: 3 )