By Topic

Efficient Similarity Search in Nonmetric Spaces with Local Constant Embedding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lei Chen ; Hong Kong Univ. of Sci. & Technol., Hong Kong ; Xiang Lian

Similarity-based search has been a key factor for many applications such as multimedia retrieval, data mining, Web search and retrieval, and so on. There are two important issues related to the similarity search, namely, the design of a distance function to measure the similarity and improving the search efficiency. Many distance functions have been proposed, which attempt to closely mimic human recognition. Unfortunately, some of these well-designed distance functions do not follow the triangle inequality and are therefore nonmetric. As a consequence, efficient retrieval by using these nonmetric distance functions becomes more challenging, since most existing index structures assume that the indexed distance functions are metric. In this paper, we address this challenging problem by proposing an efficient method, that is, local constant embedding (LCE), which divides the data set into disjoint groups so that the triangle inequality holds within each group by constant shifting. Furthermore, we design a pivot selection approach for the converted metric distance and create an index structure to speed up the retrieval efficiency. Moreover, we also propose a novel method to answer approximate similarity search in the nonmetric space with a guaranteed query accuracy. Extensive experiments show that our method works well on various nonmetric distance functions and improves the retrieval efficiency by an order of magnitude compared to the linear scan and existing retrieval approaches with no false dismissals.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:20 ,  Issue: 3 )