By Topic

Quiver: Consistent and Scalable Object Sharing for Edge Services

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Reiter, M.K. ; Dept. of Comput. Sci., Univ. of North Carolina at Chapel Hill, Chapel Hill, NC ; Samar, A.

We present Quiver, a system that coordinates service proxies placed at the "edge" of the Internet to serve distributed clients accessing a service involving mutable objects. Quiver enables these proxies to perform consistent accesses to shared objects by migrating the objects to proxies performing operations on those objects. These migrations dramatically improve performance when operations involving an object exhibit geographic locality, since migrating this object into the vicinity of proxies hosting these operations will benefit all such operations. Other workloads benefit from Quiver, dispersing the computation load across the proxies and saving the costs of sending operation parameters over the wide area when these are large. Quiver also supports optimizations for single-object reads that do not involve migrating the object. We detail the protocols for implementing object operations and for accommodating the addition, involuntary disconnection, and voluntary departure of proxies. We also evaluate Quiver through experiments on PlanetLab. Finally, we discuss the use of Quiver to build an e-commerce application and a distributed network traffic modeling service.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:19 ,  Issue: 7 )