Cart (Loading....) | Create Account
Close category search window

X-Block: An Efficient LFSR Reseeding-Based Method to Block Unknowns for Temporal Compactors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seongmoon Wang ; NEC Labs., Princeton, NJ ; Balakrishnan, K.J. ; Wenlong Wei

This paper presents an efficient method to block unknown values for temporal compactors. The control signals for the blocking logic are generated by a linear feedback shift register (LFSR). Control patterns, which describe values required at the control signals of the blocking logic, are compressed by LFSR reseeding. The size of the control LFSR, which is determined by the number of specified bits in the most specified control pattern, is minimized by propagating only one fault effect for each fault and targeting the faults that are uniquely detected by each test pattern. The linear solver to find seeds of the LFSR intelligently chooses a solution such that the impact on test quality is minimal. Very high compression (over 230X) is achieved for benchmark and industrial circuits by the proposed method. Experimental results show that the sizes of control data for the proposed method are smaller than prior work and the runtime of the proposed method is several orders of magnitude smaller than that of prior work. Hardware overhead is very low.

Published in:

Computers, IEEE Transactions on  (Volume:57 ,  Issue: 7 )

Date of Publication:

July 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.