Cart (Loading....) | Create Account
Close category search window
 

Design of a High-Power Superconducting Filter Using Resonators With Different Linewidths

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

This paper presents a design method to develop a high-power superconducting microstrip filter with different linewidth resonators. The linewidth of every resonator is optimized using this method to meet the same maximum current density. Thus, the power-handling capability of the five-pole filter on a limited substrate size can reach a maximum value. The design method is verified by the electromagnetic simulation of the current density distribution. The high-power superconducting filter is designed and fabricated on a 38 mm times 30 mm times 0.505 mm LaAlO3 substrate. The maximum resonator linewidth is 7 mm, and the minimum one is 1.6 mm. The filter has a center frequency of 2006 MHz and a narrow bandwidth of 1.0%. The measured power level is up to 35 dBm at 65 K without an evident change in insertion loss.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:55 ,  Issue: 12 )

Date of Publication:

Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.