Cart (Loading....) | Create Account
Close category search window
 

Low-K Dielectric Compatible Wafer-Level Compliant Chip-to-Substrate Interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kacker, K. ; Georgia Inst. of Technol., Atlanta ; Lo, G.C. ; Sitaraman, S.K.

Performance, power, size, and cost requirements in the microelectronics industry are pushing for smaller feature size, innovative on-chip dielectric materials, higher number of interconnects at a reduced pitch, etc., without compromising the microelectronics reliability. Compliant off-chip interconnects show great potential to address these needs. G-Helix is a lithography-based electroplated compliant interconnect that can be fabricated at the wafer level. G-Helix interconnects exhibit excellent compliance in all three orthogonal directions, and can accommodate the coefficient of thermal expansion (CTE) mismatch between the silicon die and the organic substrate without requiring an underfill material. These compliant interconnects are beneficial for integrated circuits (ICs) with low-K dielectric material. They are also potentially cost effective as they can be fabricated using conventional wafer fabrication infrastructure. In this paper we discuss the assembly and experimental reliability assessment, through thermal cycling, of G-Helix interconnects assembled on an organic substrate. Results from mechanical characterization experiments are also presented. It is shown that the proposed interconnects are not likely to delaminate or crack the low-K dielectric material. Also, a unique integrative approach is discussed, with interconnects having varying compliance for optimum electrical and mechanical performance.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:31 ,  Issue: 1 )

Date of Publication:

Feb. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.