By Topic

A Normalized Adaptive Training of Recurrent Neural Networks With Augmented Error Gradient

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wu Yilei ; Nanyang Technol. Univ., Singapore ; Song Qing ; Liu Sheng

For training algorithms of recurrent neural networks (RNN), convergent speed and training error are always two contradictory performances. In this letter, we propose a normalized adaptive recurrent learning (NARL) to obtain a tradeoff between transient and steady-state response. An augmented term is added to error gradient to exactly model the derivative of cost function with respect to hidden layer weight. The influence of the induced gain of activation function on training stability is also taken into consideration. Moreover, adaptive learning rate is employed to improve the robustness of the gradient training. Finally, computer simulations of a model prediction problem are synthesized to give comparisons between NARL and conventional normalized real-time recurrent learning (N-RTRL).

Published in:

Neural Networks, IEEE Transactions on  (Volume:19 ,  Issue: 2 )