By Topic

Algorithms for a Sparse Reconfigurable Adaptive Filter and a Photonic Switch Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Suk-seung Hwang ; California Univ., Santa Barbara ; Shynk, J.J. ; Taehyuk Kang ; Bowers, J.E.

A nonblocking photonic switch can be used to implement a tapped delay line with a large number of adaptive weights and a wide range of time delays. An advantage of using optical tapped delay lines for adaptive filtering is that the operating frequency can be quite high, in the 10-100 GHz range. We present a sparse reconfigurable adaptive filter (SRAF) based on a photonic switch with an input/output connection architecture that can be represented by a matrix of adaptive weights. This unique parallel structure can be reconfigured in an adaptive manner to implement a sparse filter impulse response for use in many applications. We consider an adaptive algorithm for this filter that chooses the input and output delays using a cross-correlation-based approach and connects these delays by weights that are adapted using a gradient algorithm. An alternative adaptive algorithm is also considered that is based on a system identification formulation where the weights are first adapted, and then the appropriate delay combinations are chosen. A search algorithm for implementing the connection constraint required by the SRAF is also discussed whereby each input is connected to only one output at any moment. Computer simulation examples are presented to illustrate the behavior of the filter for a system identification model.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:55 ,  Issue: 1 )