By Topic

Prostate Cancer Spectral Multifeature Analysis Using TRUS Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohamed, S.S. ; Agfa Healthcare, Waterloo ; Salama, M.M.A.

This paper focuses on extracting and analyzing different spectral features from transrectal ultrasound (TRUS) images for prostate cancer recognition. First, the information about the images' frequency domain features and spatial domain features are combined using a Gabor filter and then integrated with the expert radiologist's information to identify the highly suspicious regions of interest (ROIs). The next stage of the proposed algorithm is to scan each identified region in order to generate the corresponding 1-D signal that represents each region. For each ROI, possible spectral feature sets are constructed using different new geometrical features extracted from the power spectrum density (PSD) of each region's signal. Next, a classifier-based algorithm for feature selection using particle swarm optimization (PSO) is adopted and used to select the optimal feature subset from the constructed feature sets. A new spectral feature set for the TRUS images using estimation of signal parameters via rotational invariance technique (ESPRIT) is also constructed, and its ability to represent tissue texture is compared to the PSD-based spectral feature sets using the support vector machines (SVMs) classifier. The accuracy obtained ranges from 72.2% to 94.4%, with the best accuracy achieved by the ESPRIT feature set.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:27 ,  Issue: 4 )