Cart (Loading....) | Create Account
Close category search window
 

Asynchronous Machine Rotor Fault Diagnosis Technique Using Complex Wavelets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tsoumas, I.P. ; Dept. of Electr. & Comput. Eng., Univ. of Patras, Rio-Patras ; Georgoulas, G. ; Mitronikas, E.D. ; Safacas, A.N.

This paper introduces a novel approach for the detection of rotor faults in asynchronous machines, based on wavelet analysis of the stator phase current. To be more specific, the measured stator phase current is filtered through a complex wavelet. Theoretical analysis validates that the spectrum of the modulus of the result of the filtering is free from the fundamental supply frequency component, and the fault characteristics can be highlighted. This is advantageous, especially if the induction machine operates at low slip values, where the characteristic frequency components of the rotor fault are very close to the fundamental frequency component. At the same time, by matching the wavelet function to the frequencies of the faulty components, a narrow bandpass filter at the frequency region of the fault characteristic spectral components is obtained. Furthermore, in the context of this paper, features extracted using the proposed technique are used as input to a support vector machine classifier that is employed for the detection of the rotor fault. Simulation and experimental results demonstrate the effectiveness of the proposed technique.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:23 ,  Issue: 2 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.