By Topic

Negative Permeability-Based Electrically Small Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
GhadarGhadr, S. ; Northeastern Univ., Boston ; Ahmadi, A. ; Mosallaei, H.

The goal of this letter is to present the behavior of mu-negative (MNG) metamaterial-based electrically small antennas. The Green's function analysis is applied to characterize the performance of a hemispherical negative permeability (MNG) resonator excited by a slot aperture. The method of moment (MoM) is used to obtain the current distribution over the source excitation. It is illustrated how a resonator composed of negative permeability medium can successfully establish a small antenna element. For small-size structure , the approximated-form Green's function demonstrates the relation between the resonant frequencies and the material parameters. The obtained results are integrated into the design of a MNG slab radiator. The radiation performance of a slab resonator is detailed using a finite difference time domain (FDTD) full wave analysis. The obtained observations may provide road maps for the future design of metamaterial-based subwavelength antennas.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:7 )