By Topic

Off-line Signature Verification Using Enhanced Modified Direction Features in Conjunction with Neural Classifiers and Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vu Nguyen ; School of ICT, Griffith University, Queensland, Australia ; Michael Blumenstein ; Vallipuram Muthukkumarasamy ; Graham Leedham

As a biometric, signatures have been widely used to identify people. In the context of static image processing, the lack of dynamic information such as velocity, pressure and the direction and sequence of strokes has made the realization of accurate off-line signature verification systems more challenging as compared to their on-line counterparts. In this paper, we propose an effective method to perform off-line signature verification based on intelligent techniques. Structural features are extracted from the signature's contour using the modified direction feature (MDF) and its extended version: the Enhanced MDF (EMDF). Two neural network-based techniques and Support Vector Machines (SVMs) were investigated and compared for the process of signature verification. The classifiers were trained using genuine specimens and other randomly selected signatures taken from a publicly available database of 3840 genuine signatures from 160 volunteers and 4800 targeted forged signatures. A distinguishing error rate (DER) of 17.78% was obtained with the SVM whilst keeping the false acceptance rate for random forgeries (FARR) below 0.16%.

Published in:

Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)  (Volume:2 )

Date of Conference:

23-26 Sept. 2007