By Topic

Soft Sensor Modeling Based on the Soft Margin Support Vector Regression Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tao Ye ; South China Univ. of Technol., Guangzhou ; Xuefeng Zhu ; Daoping Huang ; Xiangyang Li

This paper focuses on regression applications of the Support Vector Machine (SVM) in the process industry. The support vector regression machines are employed to build soft sensing models in the paper. Soft sensor modeling, in a sense, is a kind of regression problems in industrial processes. First we review the development history of the Vapnik Chervonenkis (VC) theory and SVM. And then, the basic idea behind the SVM is introduced and some famous SVM regression algorithms are talked about. After that, the standard QP and SMO implementations to Vapnik's soft margin epsiv-SVM regression algorithm are discussed in detail. Using these two implementing methods, we perform some experiments, to predict pulp Kappa numbers, over a real-life dataset retrieved from a kraft pulp cooking process. Some useful conclusions are drawn finally.

Published in:

Control and Automation, 2007. ICCA 2007. IEEE International Conference on

Date of Conference:

May 30 2007-June 1 2007